Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0295806, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38319909

RESUMO

In Brazil, the genus Bothrops is responsible for most ophidian accidents. Snake venoms have a wide variety of proteins and peptides exhibiting a broad repertoire of pharmacological and toxic effects that elicit systemic injury and characteristic local effects. The snakes' natural resistance to envenomation caused by the presence of inhibitory compounds on their plasma have been extensively studied. However, the presence of these inhibitors in different developmental stages is yet to be further discussed. The aim of this study was to evaluate the ontogeny of Bothrops jararaca plasma inhibitor composition and, to this end, plasma samples of B. jararaca were obtained from different developmental stages (neonates, youngs, and adults) and sexes (female and male). SDS-PAGE, Western blotting, affinity chromatography, and mass spectrometry were performed to analyze the protein profile and interaction between B. jararaca plasma and venom proteins. In addition, the presence of γBjPLI, a PLA2 inhibitor previously identified and characterized in B. jararaca serum, was confirmed by Western blotting. According to our results, 9-17% of plasma proteins were capable of binding to venom proteins in the three developmental stages. The presence of different endogenous inhibitors and, more specifically, different PLA2 inhibitor (PLI) classes and antihemorrhagic factors were confirmed in specimens of B. jararaca from newborn by mass spectrometry. For the first time, the αPLI and ßPLI were detected in B. jararaca plasma, although low or no ontogenetic and sexual correlation were found. The γPLI were more abundant in adult female, than in neonate and young female, but similar to neonate, young and adult male according to the results of mass spectrometry analysis. Our results suggest that there are proteins in the plasma of these animals that can help counteract the effects of self-envenomation from birth.


Assuntos
Bothrops , Venenos de Crotalídeos , Animais , Masculino , Feminino , 60560 , Proteômica/métodos , Inibidores de Fosfolipase A2 , Bothrops/metabolismo , Fosfolipases A2/metabolismo , Venenos de Crotalídeos/química
2.
Biochimie ; 216: 90-98, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37839625

RESUMO

Snake venoms are primarily composed of proteins and peptides, which selectively interact with specific molecular targets, disrupting prey homeostasis. Identifying toxins and the mechanisms involved in envenoming can lead to the discovery of new drugs based on natural peptide scaffolds. In this study, we used mass spectrometry-based peptidomics to sequence 197 peptides in the venom of Bothrops cotiara, including a novel 7-residue peptide derived from a snake venom metalloproteinase. This peptide, named Bc-7a, features a pyroglutamic acid at the N-terminal and a PFR motif at the C-terminal, homologous to bradykinin. Using FRET (fluorescence resonance energy transfer) substrate assays, we demonstrated that Bc-7a strongly inhibits the two domains of angiotensin converting enzyme (Ki < 1 µM). Our findings contribute to the repertoire of biologically active peptides from snake venoms capable of inhibiting angiotensin-converting enzyme (ACE), beyond current known structural motifs and precursors. In summary, we report a novel snake venom peptide with ACE inhibitory activity, suggesting its potential contribution to the hypotensive effect observed in envenomation.


Assuntos
Bothrops , Venenos de Crotalídeos , Animais , Venenos de Crotalídeos/química , Peptídeos/química , Venenos de Serpentes/química , Bothrops/metabolismo , Metaloproteases , Angiotensinas/metabolismo
3.
iScience ; 26(10): 107824, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37736053

RESUMO

The clinical presentation of COVID-19 is highly variable, and understanding the underlying biological processes is crucial. This study utilized a proteomic analysis to investigate dysregulated processes in the peripheral blood mononuclear cells of patients with COVID-19 compared to healthy volunteers. Samples were collected at different stages of the disease, including hospital admission, after 7 days of hospitalization, and 30 days after discharge. Metabolic pathway alterations and increased abundance of neutrophil-related proteins were observed in patients. Patients progressing to critical illness had significantly low-abundance proteins in the pentose phosphate and glycolysis pathways compared with those presenting clinical recovery. Important biological processes, such as fatty acid concentration and glucose metabolism disorder, remained altered even after 30 days of hospital discharge. Temporal proteomic changes revealed distinct pathways in critically ill and non-critically ill patients. Our study emphasizes the significance of longitudinal cellular proteomic studies in identifying disease progression-related pathways and persistent protein changes post-hospitalization.

4.
Behav Neurosci ; 137(5): 303-318, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37410434

RESUMO

Our previous behavioral and molecular data indicate a central role of the dorsal hippocampal formation (dHF) in recent conditioned lick suppression memory. The purpose of this study was to investigate the role of the dHF in recent and remote memory of conditioned lick suppression employing proteomic analysis. Two or 40 days after conditioning, the rats were subjected to a retention test and were then euthanized after 24 hr for dHF collection. We identified 1,165 proteins and quantified 265 proteins. Upregulation of five proteins and downregulation of 21 proteins were found on postconditioning Day 2. Additionally, four proteins were upregulated and 21 proteins were downregulated on postconditioning Day 40. Integrated pathway analysis of the proteomics data indicated changes in the myelin sheath, neuron generation and differentiation, regulation of neurogenesis and synaptic vesicle transport, axonal development, and the growth cone. Our findings provide further support for the role of the dHF in conditioned lick suppression memory and novel insights into the molecular changes that are correlated with recent and remote memory in the dHF, which may be a target for cognitive enhancers. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
Proteoma , Proteômica , Ratos , Animais , Proteoma/metabolismo , Hipocampo/metabolismo , Memória , Medo/fisiologia
5.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674590

RESUMO

Receptors on the immune cell surface have a variety of glycans that may account for the immunomodulation induced by lectins, which have a carbohydrate recognition domain (CRD) that binds to monosaccharides or oligosaccharides in a specific manner. ArtinM, a D-mannose-binding lectin obtained from Artocarpus heterophyllus, has affinity for the N-glycans core. Immunomodulation by ArtinM toward the Th1 phenotype occurs via its interaction with TLR2/CD14 N-glycans on antigen-presenting cells, as well as recognition of CD3γ N-glycans on murine CD4+ and CD8+ T cells. ArtinM exerts a cytotoxic effect on Jurkat human leukemic T-cell line and human myeloid leukemia cell line (NB4). The current study evaluated the effects of ArtinM on murine and human B cells derived from non-Hodgkin's lymphoma. We found that murine B cells are recognized by ArtinM via the CRD, and the ArtinM stimulus did not augment the proliferation rate or production of IL-2. However, murine B cell incubation with ArtinM augmented the rate of apoptosis, and this cytotoxic effect of ArtinM was also seen in human B cell-lines sourced from non-Hodgkin's lymphoma Raji cell line. This cytotoxic effect was inhibited by the phosphatase activity of CD45 on Lck, and the protein kinases of the Src family contribute to cell death triggered by ArtinM.


Assuntos
Linfoma não Hodgkin , Quinases da Família src , Camundongos , Humanos , Animais , Lectinas/farmacologia , Linhagem Celular , Polissacarídeos/metabolismo , Quinase Syk
6.
Front Immunol ; 13: 1051514, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466921

RESUMO

Metabolic adaptations shape immune cell function. In the acute response, a metabolic switch towards glycolysis is necessary for mounting a proinflammatory response. During the clinical course of sepsis, both suppression and activation of immune responses take place simultaneously. Leukocytes from septic patients present inhibition of cytokine production while other functions such as phagocytosis and production of reactive oxygen species (ROS) are preserved, similarly to the in vitro endotoxin tolerance model, where a first stimulation with lipopolysaccharide (LPS) affects the response to a second stimulus. Here, we sought to investigate how cellular metabolism is related to the modulation of immune responses in sepsis and endotoxin tolerance. Proteomic analysis in peripheral blood mononuclear cells (PBMCs) from septic patients obtained at intensive care unit admission showed an upregulation of proteins related to glycolysis, the pentose phosphate pathway (PPP), production of ROS and nitric oxide, and downregulation of proteins in the tricarboxylic acid cycle and oxidative phosphorylation compared to healthy volunteers. Using the endotoxin-tolerance model in PBMCs from healthy subjects, we observed increased lactate production in control cells upon LPS stimulation, while endotoxin-tolerant cells presented inhibited tumor necrosis factor-α and lactate production along with preserved phagocytic capacity. Inhibition of glycolysis and PPP led to impairment of phagocytosis and cytokine production both in control and in endotoxin-tolerant cells. These data indicate that glucose metabolism supports leukocyte functions even in a condition of endotoxin tolerance.


Assuntos
Endotoxinas , Sepse , Humanos , Proteoma , Leucócitos Mononucleares , Lipopolissacarídeos/farmacologia , Proteômica , Espécies Reativas de Oxigênio , Leucócitos , Via de Pentose Fosfato , Lactatos , Glucose , Citocinas
7.
Toxicon ; 214: 78-90, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35609828

RESUMO

Considerable heterogeneity and ontogenetic changes in venom composition have already been observed in different species of snakes within the Viperidae family. Since the venom of young and adult can cause distinct pathological effects and because the antivenom may be less effective in neutralizing envenoming by young snakes compared to adults, it is of paramount importance to understand the ontogenetic variation of snake venom. Thus, the present study aimed to analyze and compare the venom of Bothrops pauloensis snakes, searching for possible influences of ontogeny and sex in their biochemical and biological aspects. The venom of younger individuals was more complex in relation to high molecular mass proteins, with a greater abundance of metalloproteinases, while adults showed a greater abundance of medium and low molecular mass proteins, such as phospholipases A2 (PLA2), C-type lectins and serine proteases. The antivenom showed better immunorecognition towards the venom of adult snakes than younger ones, in addition to a deficiency in the recognition of medium molecular mass proteins, suggesting the need for an improvement in the antivenom. Younger snakes showed higher coagulant, caseinolytic, and hemorrhagic activity, while adult snakes showed higher L-amino acid oxidase (LAAO) activity and acted faster in lethality. Differences between males and females were observed mainly in the rate of loss of coagulant activity, change in PLA2 activity and lethality action time. Furthermore, considering only the adult groups, males showed a higher LAAO and thrombin-like activity, while females showed a higher caseinolytic and hyaluronidase activity. With the results obtained in this work, it was possible to conclude that there is an ontogenetic variation in the composition and some activities of the B. pauloensis snake venom, in addition to differences between the venom of males and females, reinforcing that there is an intraspecific variation that may result in different symptoms in their envenoming and, consequently, differences in the response to treatment with the antivenom.


Assuntos
Bothrops , Venenos de Crotalídeos , Animais , Antivenenos , Bothrops/metabolismo , Venenos de Crotalídeos/química , Venenos de Crotalídeos/toxicidade , Feminino , Masculino , Metaloproteases/metabolismo , Fosfolipases A2/metabolismo , Proteínas , Venenos de Serpentes/química , Serpentes
8.
Front Pharmacol ; 13: 828269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35264963

RESUMO

The venom of the Brazilian pit viper Bothrops jararaca (BjV) is a complex mixture of molecules, and snake venom metalloproteinases (SVMP) and serine proteinases (SVSP) are the most abundant protein families found therein. Toxins present in BjV trigger most of the deleterious disturbances in hemostasis observed in snakebites, i.e., thrombocytopenia, hypofibrinogenemia and bleedings. The treatment of patients bitten by snakes still poses challenges and the bioflavonoid rutin has already been shown to improve hemostasis in an experimental model of snakebite envenomation. However, rutin is poorly soluble in water; in this study, it was succinylated to generate its water-soluble form, rutin succinate (RS), which was analyzed comparatively regarding the chemical structure and characteristic features of rutin. Biological activities of rutin and RS were compared on hemostatic parameters, and against toxic activities of crude BjV in vitro. In vivo, C57BL/6 mice were injected i.p. with either BjV alone or pre-incubated with rutin, RS or 1,10-phenanthroline (o-phe, an SVMP inhibitor), and the survival rates and hemostatic parameters were analyzed 48 h after envenomation. RS showed the characteristic activities described for rutin - i.e., antioxidant and inhibitor of protein disulfide isomerase - but also prolonged the clotting time of fibrinogen and plasma in vitro. Differently from rutin, RS inhibited typical proteolytic activities of SVMP, as well as the coagulant activity of BjV. Importantly, both rutin and RS completely abrogated the lethal activity of BjV, in the same degree as o-phe. BjV induced hemorrhages, falls in RBC counts, thrombocytopenia and hypofibrinogenemia in mice. Rutin and RS also improved the recovery of platelet counts and fibrinogen levels, and the development of hemorrhages was totally blocked in mice injected with BjV incubated with RS. In conclusion, RS has anticoagulant properties and is a novel SVMP inhibitor. Rutin and RS showed different mechanisms of action on hemostasis. Only RS inhibited directly BjV biological activities, even though both flavonoids neutralized B. jararaca toxicity in vivo. Our results showed clearly that rutin and RS show a great potential to be used as therapeutic compounds for snakebite envenomation.

9.
Biochem Biophys Res Commun ; 590: 139-144, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-34974302

RESUMO

In Brazil, the major vector of arboviruses is Aedes aegypti, which can transmit several alpha and flaviviruses. In this work, a pacifastin protease inhibitor library was constructed and used to select mutants for Ae. aegypti larvae digestive enzymes. The library contained a total of 3.25 × 105 cfu with random mutations in the reactive site (P2-P2'). The most successfully selected mutant, TiPI6, a versatile inhibitor, was able to inhibit all three Ae. aegypti larvae proteolytic activities, trypsin-like, chymotrypsin-like and elastase-like activities, with IC50 values of 0.212 nM, 0.107 nM and 0.109 nM, respectively. In conclusion, the TiPI mutated phage display library was shown to be a useful tool for the selection of an inhibitor of proteolytic activities combined in a mix. TiPI6 is capable of controlling all three digestive enzyme activities present in the larval midgut extract. To our knowledge, this is the first time that one inhibitor containing a Gln at the P1 position showed inhibitory activity against trypsin, chymotrypsin, and elastase-like activities. TiPI6 can be a candidate for further larvicidal studies.


Assuntos
Aedes/enzimologia , Inibidores Enzimáticos/farmacologia , Biblioteca de Peptídeos , Proteínas/farmacologia , Sequência de Aminoácidos , Animais , Proteínas de Insetos/química , Proteínas de Insetos/isolamento & purificação , Proteínas de Insetos/metabolismo , Larva/efeitos dos fármacos , Proteínas Mutantes/química , Proteínas Mutantes/isolamento & purificação , Mutação/genética , Inibidores da Tripsina
10.
Toxicon, v. 214, p. 78-90, jul. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4363

RESUMO

Considerable heterogeneity and ontogenetic changes in venom composition have already been observed in different species of snakes within the Viperidae family. Since the venom of young and adult can cause distinct pathological effects and because the antivenom may be less effective in neutralizing envenoming by young snakes compared to adults, it is of paramount importance to understand the ontogenetic variation of snake venom. Thus, the present study aimed to analyze and compare the venom of Bothrops pauloensis snakes, searching for possible influences of ontogeny and sex in their biochemical and biological aspects. The venom of younger individuals was more complex in relation to high molecular mass proteins, with a greater abundance of metalloproteinases, while adults showed a greater abundance of medium and low molecular mass proteins, such as phospholipases A2 (PLA2), C-type lectins and serine proteases. The antivenom showed better immunorecognition towards the venom of adult snakes than younger ones, in addition to a deficiency in the recognition of medium molecular mass proteins, suggesting the need for an improvement in the antivenom. Younger snakes showed higher coagulant, caseinolytic, and hemorrhagic activity, while adult snakes showed higher L-amino acid oxidase (LAAO) activity and acted faster in lethality. Differences between males and females were observed mainly in the rate of loss of coagulant activity, change in PLA2 activity and lethality action time. Furthermore, considering only the adult groups, males showed a higher LAAO and thrombin-like activity, while females showed a higher caseinolytic and hyaluronidase activity. With the results obtained in this work, it was possible to conclude that there is an ontogenetic variation in the composition and some activities of the B. pauloensis snake venom, in addition to differences between the venom of males and females, reinforcing that there is an intraspecific variation that may result in different symptoms in their envenoming and, consequently, differences in the response to treatment with the antivenom.

11.
Front Pharmacol, v. 13, 828269, fev. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4262

RESUMO

The venom of the Brazilian pit viper Bothrops jararaca (BjV) is a complex mixture of molecules, and snake venom metalloproteinases (SVMP) and serine proteinases (SVSP) are the most abundant protein families found therein. Toxins present in BjV trigger most of the deleterious disturbances in hemostasis observed in snakebites, i.e., thrombocytopenia, hypofibrinogenemia and bleedings. The treatment of patients bitten by snakes still poses challenges and the bioflavonoid rutin has already been shown to improve hemostasis in an experimental model of snakebite envenomation. However, rutin is poorly soluble in water; in this study, it was succinylated to generate its water-soluble form, rutin succinate (RS), which was analyzed comparatively regarding the chemical structure and characteristic features of rutin. Biological activities of rutin and RS were compared on hemostatic parameters, and against toxic activities of crude BjV in vitro. In vivo, C57BL/6 mice were injected i.p. with either BjV alone or pre-incubated with rutin, RS or 1,10-phenanthroline (o-phe, an SVMP inhibitor), and the survival rates and hemostatic parameters were analyzed 48 h after envenomation. RS showed the characteristic activities described for rutin – i.e., antioxidant and inhibitor of protein disulfide isomerase – but also prolonged the clotting time of fibrinogen and plasma in vitro. Differently from rutin, RS inhibited typical proteolytic activities of SVMP, as well as the coagulant activity of BjV. Importantly, both rutin and RS completely abrogated the lethal activity of BjV, in the same degree as o-phe. BjV induced hemorrhages, falls in RBC counts, thrombocytopenia and hypofibrinogenemia in mice. Rutin and RS also improved the recovery of platelet counts and fibrinogen levels, and the development of hemorrhages was totally blocked in mice injected with BjV incubated with RS. In conclusion, RS has anticoagulant properties and is a novel SVMP inhibitor. Rutin and RS showed different mechanisms of action on hemostasis. Only RS inhibited directly BjV biological activities, even though both flavonoids neutralized B. jararaca toxicity in vivo. Our results showed clearly that rutin and RS show a great potential to be used as therapeutic compounds for snakebite envenomation.

12.
Front Immunol ; 12: 744799, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34594344

RESUMO

Sepsis is a global health emergency, which is caused by various sources of infection that lead to changes in gene expression, protein-coding, and metabolism. Advancements in "omics" technologies have provided valuable tools to unravel the mechanisms involved in the pathogenesis of this disease. In this study, we performed shotgun mass spectrometry in peripheral blood mononuclear cells (PBMC) from septic patients (N=24) and healthy controls (N=9) and combined these results with two public microarray leukocytes datasets. Through combination of transcriptome and proteome profiling, we identified 170 co-differentially expressed genes/proteins. Among these, 122 genes/proteins displayed the same expression trend. Ingenuity Pathway Analysis revealed pathways related to lymphocyte functions with decreased status, and defense processes that were predicted to be strongly increased. Protein-protein interaction network analyses revealed two densely connected regions, which mainly included down-regulated genes/proteins that were related to the transcription of RNA, translation of proteins, and mitochondrial translation. Additionally, we identified one module comprising of up-regulated genes/proteins, which were mainly related to low-density neutrophils (LDNs). LDNs were reported in sepsis and in COVID-19. Changes in gene expression level were validated using quantitative real-time PCR in PBMCs from patients with sepsis. To further support that the source of the upregulated module of genes/proteins found in our results were derived from LDNs, we identified an increase of this population by flow cytometry in PBMC samples obtained from the same cohort of septic patients included in the proteomic analysis. This study provides new insights into a reprioritization of biological functions in response to sepsis that involved a transcriptional and translational shutdown of genes/proteins, with exception of a set of genes/proteins related to LDNs and host-defense system.


Assuntos
Leucócitos Mononucleares/metabolismo , Neutrófilos/metabolismo , Sepse/metabolismo , Bases de Dados Factuais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Leucócitos Mononucleares/citologia , Células Supressoras Mieloides/citologia , Células Supressoras Mieloides/metabolismo , Neutrófilos/citologia , Mapas de Interação de Proteínas , Proteômica , Sepse/genética , Sepse/imunologia
13.
PLoS One ; 16(6): e0253050, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34111213

RESUMO

The Brazilian lancehead (Bothrops moojeni) has a wide distribution in Brazil and represents a serious public health hazard. Previous works reported that the symptoms of snakebites caused by B. moojeni juveniles' bites were mainly related to coagulation, while those caused by adults' bites had a more prominent local damage. In this work, we analyzed the venoms of B. moojeni at different life stages to better understand the ontogeny shift in this species. Snakes were grouped by age and sex, and venom pools were formed accordingly. Compositional analyses by one-dimensional electrophoresis (1-DE), chromatography, and mass spectrometry revealed that ontogenetic changes might be mostly related to phospholipase A2 (PLA2) and metalloproteases. Regarding the venoms functional aspect, proteolytic, L-amino acid oxidase, PLA2, and coagulant in vitro activities were assayed, but only the first and the last ones showed age-related changes, with the venom of snakes up to 1 year-old displaying lower proteolytic and higher coagulant activities, while those from 2 years-old onward presented the opposite relation. The venoms of 3 years-old snakes were exceptions to the compositional and functional pattern of adults as both venoms presented profiles similar to neonates. Sex-related differences were observed in specific groups and were not age-related. In vivo experiments (median lethal dose and hemorrhagic activity) were statistically similar between neonates and adults, however we verified that the adult venom killed mice faster comparing to the neonates. All venoms were mostly recognized by the antibothropic serum and displayed similar profiles to 1-DE in western blotting. In conclusion, the Brazilian lancehead venom showed ontogenetic shift in its composition and activities. Furthermore, this change occurred in snakes from 1 to 2 years-old, and interestingly the venom pools from 3 years-old snakes had particular characteristics, which highlights the importance of comprehensive studies to better understand venom variability.


Assuntos
Bothrops/crescimento & desenvolvimento , Venenos de Crotalídeos/análise , L-Aminoácido Oxidase/metabolismo , Animais , Bothrops/metabolismo , Brasil , Cromatografia Líquida de Alta Pressão , Eletroforese , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Espectrometria de Massas , Metaloproteases/metabolismo , Fosfolipases A2/metabolismo , Proteínas de Répteis/metabolismo
14.
Toxicon ; 193: 73-83, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33515573

RESUMO

The venom color variation of Crotalus durissus terrificus (Cdt) is attributed to the presence of the toxin L-amino acid oxidase (LAAO). During the venom milking routine of Instituto Butantan, we have noticed that most venoms of captive Cdt specimens show a yellowish color, while most venoms of wild specimens are white. Here we describe a comparative analysis of long-term captive (LTC) and recently wild-caught (RWC) Cdt, focusing on LAAO variation. For the identification of LAAO in individual venoms, four different approaches were employed: evaluation of the enzymatic activity, SDS-PAGE, Western blotting, and ELISA. In addition, mass spectrometry analysis was performed using pooled samples. Although some variation among these methodologies was observed, it was possible to notice that the presence of LAAO was significantly higher in the venom of LTC individuals. LAAO was identified in 60-80% LTC specimens and in only 10-12% of RWC specimens. Furthermore, this enzyme accounts for 5.6% of total venom proteins of LTC Cdt pooled venom, while it corresponds to only 0.7% of RWC Cdt pooled venom. These findings strongly suggest that captive maintenance increases the expression of LAAO in Cdt venom.


Assuntos
Venenos de Crotalídeos , Crotalus , L-Aminoácido Oxidase/metabolismo , Animais , Eletroforese em Gel de Poliacrilamida , Humanos , Venenos de Serpentes
15.
Toxin Rev, v. 41, n.2, p. 370-379, fev. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3622

RESUMO

Spiders are the most successful and diversified group of venomous animals. Currently, there are more than 49,000 species distributed almost all over the world. This broad distribution suggests that they have efficient strategies to improve their survival; one of them is the production of highly elaborate venoms, which are a heterogeneous mixture of molecules like inorganic salts, peptides, proteins, and enzymes. Considering this, this study aimed to analyze the venom of the spider Avicularia juruensis (Mygalomorphae: Theraphosidae) searching for proteolytic enzymes. Using zymography, electrophoresis, transcriptomics and proteomics approaches we identified one neprilysin able to degrade casein, that we named “Ajur_Neprilysin”. Neprilysins are metalloendopeptidases whose presence has already been described in animal venoms, however, its function has not yet been elucidated. Our results showed for the first time one non-bacterial neprilysin which can cleave casein and suggest that its role in envenomation is to degrade the extracellular matrix, facilitating the access of other toxins to their targets, as well as digestive fluids. Moreover, this discovery contributes to increasing the knowledge about little-studied species, since the Ajur_Neprilysin is the second neprilysin found in the venom from a mygalomorph spider.

16.
Toxicon X, v. 193, p. 73-83, jan. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3504

RESUMO

The venom color variation of Crotalus durissus terrificus (Cdt) is attributed to the presence of the toxin L-amino acid oxidase (LAAO). During the venom milking routine of Instituto Butantan, we have noticed that most venoms of captive Cdt specimens show a yellowish color, while most venoms of wild specimens are white. Here we describe a comparative analysis of long-term captive (LTC) and recently wild-caught (RWC) Cdt, focusing on LAAO variation. For the identification of LAAO in individual venoms, four different approaches were employed: evaluation of the enzymatic activity, SDS-PAGE, Western blotting, and ELISA. In addition, mass spectrometry analysis was performed using pooled samples. Although some variation among these methodologies was observed, it was possible to notice that LAAOs presence were significantly higher in the venom of LTC individuals. LAAO was identified in 60-80% LTC specimens and in only 10-12% of RWC specimens. Furthermore, this enzyme accounts for 5.6% of total venom proteins of LTC Cdt pooled venom, while it corresponds to only 0.7% of RWC Cdt pooled venom. These findings strongly suggest that captive maintenance increases the expression of LAAO in Cdt venom.

17.
J Venom Anim Toxins Incl Trop Dis ; 26: e20200018, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33101399

RESUMO

BACKGROUND: Variability in snake venoms is a well-studied phenomenon. However, sex-based variation of Bothrops atrox snake venom using siblings is poorly investigated. Bothrops atrox is responsible for the majority of snakebite accidents in the Brazilian Amazon region. Differences in the venom composition of Bothrops genus have been linked to several factors such as ontogeny, geographical distribution, prey preferences and sex. Thus, in the current study, venom samples of Bothrops atrox male and female siblings were analyzed in order to compare their biochemical and biological characteristics. METHODS: Venoms were collected from five females and four males born from a snake captured from the wild in São Bento (Maranhão, Brazil), and kept in the Laboratory of Herpetology of Butantan Intitute. The venoms were analyzed individually and as a pool of each gender. The assays consisted in protein quantification, 1-DE, mass spectrometry, proteolytic, phospholipase A2, L-amino acid oxidase activities, minimum coagulant dose upon plasma, minimum hemorrhagic dose and lethal dose 50%. RESULTS: Electrophoretic profiles of male's and female's venom pools were quite similar, with minor sex-based variation. Male venom showed higher LAAO, PLA2 and hemorrhagic activities, while female venom showed higher coagulant activity. On the other hand, the proteolytic activities did not show statistical differences between pools, although some individual variations were observed. Meanwhile, proteomic profile revealed 112 different protein compounds; of which 105 were common proteins of female's and male's venom pools and seven were unique to females. Despite individual variations, lethality of both pools showed similar values. CONCLUSION: Although differences between female and male venoms were observed, our results show that individual variations are significant even between siblings, highlighting that biological activities of venoms and its composition are influenced by other factors beyond gender.

18.
Carbohydr Polym ; 247: 116671, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829799

RESUMO

Heparin was immobilized on magnetic chitosan particles to be used as a tool for human plasma protein identification. Chitosan was magnetized by co-precipitation with Fe2+/Fe3+ (MAG-CH). Heparin was functionalized with carbodiimide and N-hydroxysuccinimide and covalently linked to MAG-CH (MAG-CH-hep). X-ray diffraction confirmed the presence of chitosan and Fe3O4 in MAG-CH. This particle exhibited superparamagnetism and size between 100-300 µm. Human plasma diluted with 10 mM phosphate buffer (pH 5.5) or 50 mM Tris-HCl buffer (pH 8.5) was incubated with MAG-CH-hep, and the proteins fixed were eluted with the same buffers containing increasing concentrations of NaCl. The proteins obtained were investigated by SDS-PAGE, LC/MS, and biological activity tests (PT, aPTT, and enzymatic chromogenic assay). Inhibitors of the serpin family, prothrombin, and human albumin were identified in this study. Therefore, MAG-CH-hep can be used to purify these proteins and presents the following advantages: low-cost synthesis, magnetic separation, ion-exchange purification, and reusability.


Assuntos
Proteínas Sanguíneas/análise , Quitosana/química , Heparina/química , Imãs , Adsorção , Humanos
19.
PLoS One ; 15(2): e0229657, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32106235

RESUMO

Plasma in several organisms has components that promote resistance to envenomation by inhibiting specific proteins from snake venoms, such as phospholipases A2 (PLA2s). The major hypothesis for inhibitor's presence would be the protection against self-envenomation in venomous snakes, but the occurrence of inhibitors in non-venomous snakes and other animals has opened new perspectives for this molecule. Thus, this study showed for the first time the structural and functional characterization of the PLA2 inhibitor from the Boa constrictor serum (BoaγPLI), a non-venomous snake that dwells extensively the Brazilian territory. Therefore, the inhibitor was isolated from B. constrictor serum, with 0.63% of recovery. SDS-PAGE showed a band at ~25 kDa under reducing conditions and ~20 kDa under non-reducing conditions. Chromatographic analyses showed the presence of oligomers formed by BoaγPLI. Primary structure of BoaγPLI suggested an estimated molecular mass of 22 kDa. When BoaγPLI was incubated with Asp-49 and Lys-49 PLA2 there was no severe change in its dichroism spectrum, suggesting a non-covalent interaction. The enzymatic assay showed a dose-dependent inhibition, up to 48.2%, when BoaγPLI was incubated with Asp-49 PLA2, since Lys-49 PLA2 has a lack of enzymatic activity. The edematogenic and myotoxic effects of PLA2s were also inhibited by BoaγPLI. In summary, the present work provides new insights into inhibitors from non-venomous snakes, which possess PLIs in their plasma, although the contact with venom is unlikely.


Assuntos
Boidae/sangue , Fosfolipases A2 do Grupo IV/antagonistas & inibidores , Inibidores de Fosfolipase A2/sangue , Sequência de Aminoácidos , Animais , Bothrops/metabolismo , Brasil , Venenos de Crotalídeos/antagonistas & inibidores , Venenos de Crotalídeos/química , Fosfolipases A2 do Grupo IV/química , Peso Molecular , Inibidores de Fosfolipase A2/química , Domínios e Motivos de Interação entre Proteínas , Venenos de Serpentes/antagonistas & inibidores , Venenos de Serpentes/química , Espectrometria de Massas em Tandem
20.
Oncotarget ; 11(51): 4770-4787, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33473260

RESUMO

Most characterized angiogenic modulators are proteolytic fragments of structural plasma and/or matrix components. Herein, we have identified a novel anti-angiogenic peptide generated by the in vitro hydrolysis of the C-terminal moiety of the fibrinogen alpha chain, produced by the snake venom metalloprotease bothropasin (SVMP), a hemorrhagic proteinase in Bothrops jararaca venom. The 14-amino acids peptide (alphastatin-C) is a potent antagonist of basic fibroblast growth factor, induced endothelial cell (HUVEC-CS) proliferation, migration and capillary tube formation in matrigel. It also inhibits cell adhesion to fibronectin. The basis of the antagonism between bFGF and alphastatin-C is elucidated by the inhibition of various bFGF induced signaling pathways and their molecular components modification, whenever the combination of the stimuli is provided, in comparison to the treatment with bFGF only. To corroborate to the potential therapeutic use of alphastatin-C, we have chosen to perform in vivo assays in two distinct angiogenic settings. In chick model, alphastatin-C inhibits chorioallantoic membrane angiogenesis. In mouse, it efficiently reduces tumor number and volume in a melanoma model, due to the impairment of tumor neovascularization in treated mice. In contrast, we show that the alphastatin-C peptide induces arteriogenesis, increasing pial collateral density in neonate mice. alphastatin-C is an efficient new antiangiogenic FGF-associated agent in vitro, it is an inhibitor of embryonic and tumor vascularization in vivo while, it is an arteriogenic agent. The results also suggest that SVMPs can be used as in vitro biochemical tools to process plasma and/or matrix macromolecular components unraveling new angiostatic peptides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...